
JOURNAL OF COMPUTATIONAL PHYSICS 127, 179–195 (1996)
ARTICLE NO. 0167

A Variational Level Set Approach to Multiphase Motion*

HONG-KAI ZHAO, T. CHAN, B. MERRIMAN, AND S. OSHER

Mathematics Department, UCLA, Los Angeles, California 90095-1555

Received July 31, 1995; revised February 22, 1996

The point at which they meet (the triple junction) has
prescribed angles which can be shown [12] to be defined byA coupled level set method for the motion of multiple junctions

(of, e.g., solid, liquid, and grain boundaries), which follows the
gradient flow for an energy functional consisting of surface tension
(proportional to length) and bulk energies (proportional to area), is sin u1

f23
5

sin u2

f31
5

sin u3

f12
, (1.2)

developed. The approach combines the level set method of S. Osher
and J. A. Sethian with a theoretical variational formulation of the
motion by F. Reitich and H. M. Soner. The resulting method uses
as many level set functions as there are regions and the energy where ui is the angle between the two curves Gij and Gij9 ,
functional is evaluated entirely in terms of level set functions. The j ? j9; see Fig. 1.
gradient projection method leads to a coupled system of perturbed This problem was defined and analyzed clearly in a paper
(by curvature terms) Hamilton–Jacobi equations. The coupling is

by Reitich and Soner [12], and we base our approach inenforced using a single Lagrange multiplier associated with a con-
part on their theoretical framework. Their method doesstraint which essentially prevents (a) regions from overlapping and

(b) the development of a vacuum. The numerical implementation not lend itself to a direct numerical treatment.
is relatively simple and the results agree with (and go beyond) Our objective here is to develop and implement numeri-
the theory as given in [12]. Other applications of this metho- cal algorithms which ‘‘capture’’ rather than ‘‘track’’ the
dology, including the decomposition of a domain into subregions

interfaces, based on the level set method of Osher andwith minimal interface length, are discussed. Finally, some new
Sethian [9]. The usual advantages of the level set methodtechniques and results in level set methodology are pre-

sented. Q 1996 Academic Press, Inc. hold (see, e.g., [2, 8, 9, 16]). In the case of a single interface
separating two phases the central idea is to follow the
evolution of a function f, whose zero-level set corresponds

1. INTRODUCTION to the position of the moving interface. The method per-
mits cusps, corners, and topological changes.

In this article we shall develop an algorithm for the Since its inception, the method has been used to compute
motion of multiple junctions which is associated with an and analyze an array of mathematical and physical phe-
energy functional involving the length of each interface nomena. See, e.g., [8] and the references theorem.
and the area of each subregion. (Three-dimensional ana- In earlier work [6], Merriman, Bence, and Osher have
logues are also easy to implement—the word ‘‘area’’ re- extended the level set method to compute the motion of
places ‘‘length’’ and ‘‘volume’’ replaces ‘‘area’’ in the multiple junctions. Also in that paper, and in [5, 7], a simple
above). Examples of such motion include solid, liquid, method based on the diffusion of characteristic functions
grain, or multiphase boundaries. These internal interfaces of each set Vi , followed by a certain reassignment step,
are generally out of equilibrium and the resulting motion was shown to be appropriate for the motion of multiple
is driven by decreasing energy. junctions in which the bulk energies are zero (and, hence,

The simplest model involves three curves meeting at a the constants ei 5 0, i 5 1, ..., n) and the fij are all equal to
point as shown in Fig. 1. Each interface Gij separates regions the same positive constant, i.e., pure mean curvature flow.
Vi and Vj and the normal velocity is a positive multiple of More general motion involving somewhat arbitrary func-
the curvature of the interface plus the difference of the tions of curvature, perhaps different for each interface was
bulk energies. proposed in [6] as well. This was implemented basically

by decoupling the motions and then using a reassignment
Normal velocity of Gij 5 vij 5 fijkij 1 (ei 2 ej). (1.1) step. Again each region has its own private level set func-

tion. This function moves each level set with a normal
velocity depending on the proximity to the nearest inter-* Research supported by ARPA/ONR-N00014-92-J-1890, NSF

DMS94-04942, and ARO DAAH04-95-1-0155. face, thus vacuum and overlapping regions generally de-
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The format of our paper is as follows. In the next section,
we give the level set formulation for the dynamics of the
motion and discuss other applications such as the optimal
decomposition of domains. In Section 3 we give the details
of the numerical implementation. In Section 4 we present
the numerical results. Finally, in the Appendix we discuss
some useful new results and techniques concerning the
level set methodology.

FIG. 1. The interfaces Gij with normal velocity vij 5 fijkij 1 ei 2 ej

and angle ui . 2. THE LEVEL SET FORMULATION

For a given open region V with smooth boundary we
velop. Then a simple reassignment step is used, removing assume the existence of a level set function w(x, y), which
all the vacuum and overlap. For details see [6]. In that is Lipschitz continuous, satisfying
paper there was no restriction to gradient flows. However,
the general method in [6] lacks (so far) a clean theoretical w(x, y) . 0 for (x, y) [ V (2.1a)
basis to guide the design of numerical algorithms. We rec-

w(x, y) 5 0 for (x, y) [ V (2.1b)tify this with the present method.
Here we follow Reitich and Soner’s variational formula- w(x, y) , 0 for (x, y) [ Vc. (2.1c)

tion in [12]. Given a disjoint family Vi of regions in R2

with the common boundary between Vi and Vj denoted Then we have the simple facts,
by Gij , we associate to this geometry an energy function
of the form length (V) 5 E E d(w(x, y))u=w(x, y)udx dy (2.2a)

E 5 E1 1 E2
area (V) 5 E E H(w(x, y)) dx dy, (2.2b)

E1 5 O
1#i#j#n

fij length (Gij) (1.3)
curvature of any level set of f at a point (x, y)

E2 5 O
1#i#n

ei area (Vi) 5 2= ? (=w/u=wu), (2.2c)

where H(x) is the Heaviside functionwhere E1 is the energy of the interface (surface tension),
E2 is bulk energy, and n is the number of phases. The
gradient flow induces motion such that the normal velocity

H(x) 5H1, x $ 0

0, x , 0of each interface is defined in (1.1). At triple points (which
can be seen geometrically by the triangle inequality to be
the only stable junctions if all the fij . 0), the angles are and d(x) is the Dirac delta function
determined by (1.2) throughout the motion. (It is interest-
ing that our numerical method, defined in the following

d(x) 5
d

dx
H(x) (in the sense of distributions).sections, does this automatically. The speed of propagation

of the angle into the equilibrium of this configuration is
infinite.) Reitich and Soner make both these state-

Of course, our numerical simulations involve slightlyments—we provide the details for (1.1) in the next section,
regularized versions of d(x) and H(x)—see (3.4) below.and the derivation of (1.2) is rather straightforward and

Here, and throughout this paper, we definewill not be given here.
To summarize, there are two main points to this paper:

u=wu 5 Ïw2
x 1 w2

y.
(1) We develop an efficient and versatile computa-

tional algorithm for the theoretical variational problem The statement in (2.2b) is obvious, while that in (2.2a)
posed by Reitich and Soner in [12]. was proven in [2], for example.

Given n different regions (phases), which are moving in(2) We provide a theoretical basis, as a descent solution
time, we associate to each regions Vi(x, y, t) a level setto a variational problem, for the time split level set method
function wi(x, y, t) and defineproposed by Merriman, Bence, and Osher in [6], which in

turn allows us to develop a superior version of that original
ad hoc algorithm. E 5 E1 1 E2 (2.3a)
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i.e., one which is unsuitable for use with Lagrange multipli-
ers because the gradient of the constraint function vanishes
identically on the constraint manifold. See the discussion
after Remark 2.6. Instead we shall enforce

E E (o H(wi(x, y, t)) 2 1)2

2
dx dy 5 « (2.6)

for « . 0, as small as we can manage numerically. (We
find that « corresponds to the area of one grid cell for ourFIG. 2. Regions of vacuum or overlap.
computations. Throughout this paper, « . 0 will denote
various small positive numbers).

In the first version of this paper we proposed a reassign-
E 5 E1 1 E2 (2.3b) ment step, similar to that in [6], in which at the end of

each calculation we remove the very small vacuum and
E1 5 On

i51
ci E E d(wi(xi , y, t))u=wi(x, y, t)udx dy (2.3c) (perhaps) overlap region. We have since found that this

is unnecessary numerically for situations in which all the
ci . 0. If some of the ci 5 0, we set them to the value

E2 5 On
i51

ei E E H(wi(x, y, t)) dx dy,
C Dx, for C an O(1) constant and Dx 5 grid size. The
numerical evidence is that this regularization with ‘‘van-
ishing viscosity’’ removes the need for reassignment. Wewhere
typically have a one point vacuum region, which leads to
« 5 O(Dx)2 in (2.6). We justify the need for this explicitfij 5 ci 1 cj, 1 # i , j # n. (2.3d)
use of vanishing viscosity in the Appendix. We remark here
that this is quite unlike the single level set case developed inIn the (most interesting) case when n 5 3 we can solve
[9] and discussed in many succeeding papers, where theuniquely for the ci . For n . 3, (2.3d) restricts our class of
inviscid limit comes automatically through the finite differ-admissible surface energies fij . We shall discuss this relation
ence approximation of the convection term. See the Ap-further below in (2.7) and (2.8) and in the remarks which
pendix for a further discussion of this.follow those equations. (We note here that, by allowing

the ci to depend on all of the wj , we can handle the cases Remark 2.1. The formulations (2.3) and (1.3) can be
n $ 4. This will be discussed in future work.) It is clear extended to the case where the ei , ci , and fij are functions
from (2.2) that (1.3) and (2.3) are equivalent. Now our of the space variables.
problem becomes:

Using the angle relation (1.2) at a triple point, we canMinimize E subject to the constraint that
set (normalizing sin u1/f23 5 1):

On
i51

H(wi(x, y)) 2 1 ; 0. (2.4) c2 1 c3 5 sin u1 (2.7a)

c3 1 c1 5 sin u2 (2.7b)
This infinite set of constraints prevents the development

c1 1 c2 5 sin u3 , (2.7c)of overlapping regions and/or vacuum. It requires that the
level curves h(x, y)uwi(x, y, t) 5 0j match perfectly. See

leading us toFig. 2.
The implementation of (2.3) with the infinite set of con-

straints (2.4) is computationally demanding. Instead we try
c1 5

sin u3 1 sin u2 2 sin u1

2
5

sin u3(1 1 cos u2)
2to replace the constraint (2.4) by a single constraint

1
sin u2(1 1 cos u3)

2
(2.8a)E E (o H(wi(x, y, t)) 2 1)2

2
dx dy 5 0. (2.5)

c2 5
sin u1 1 sin u3 2 sin u2

2
5

sin u1(1 1 cos u3)
2We shall show below (and it is intuitively clear) that this

is not legitimate—one cannot replace an arbitrary number
of constraints by the single constraint obtained by summing

1
sin u3(1 1 cos u1)

2
(2.8b)

their squares. Doing that results in a degenerate constraint,
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c3 5
sin u2 1 sin u1 2 sin u3

2
5

sin u2(1 1 cos u1)
2

(2.8c)

1 eid(fi) 1 l SOn
j51

H(fj) 2 1D d(fi)G c dx dy

(2.11)

1
sin u1(1 1 cos u1)

2
. 1 E

D

d(fi)
u=fiu

fi

n
c ds

Thus the ci are all positive iff all the angles ui are between 5 2 E E
D

d(fi) Sci= ?S =fi

u=fiu
D2 ei

08 and 1808. The importance of this is seen in the evolution
equation (2.12) we shall derive below.

We now state a first-order necessary condition for our 2 l SOn
i51

H(fi) 2 1DD c dx dy
minimization problem.

THEOREM 2.1. The solutions to the minimization
1 E

D

d(fi)
u=fiu

fi

n
c dx.

problem:

M: minimize E1 1 E2 (of 2.3) in a fixed domain D subject This expression must vanish for all w(x, y). Thus we
to the integral constraint (2.6), obtain (2.9).

We wish to solve this constrained optimization problemsatisfy, for i 5 1, ..., n
by using the gradient projection method of Rosen [13],
where we parametrize the descent direction by time and
rescale, replacing the common factor d(wi) by u=wiu. Thisd(wi) Sci= ?S =wi

u=wiu
D2 ei 2 l SOn

i51
H(wi) 2 1DD5 0 (2.9a)

time rescaling does not affect the steady state solution, but
it does remove stiffness near the zero level sets of wi . Only
the speed of descent, not its direction, is affected. We getwith boundary conditions
the following system of nonlinear evolution equations for
the minimization:d(wi)

u=wiu
wi

n
5 0 on D, (2.9b)

wi

t
5 u=wiu Sci= ?S =wi

u=wiu
D2 ei

(2.12a)where l is a Lagrange multiplier.

Proof. Using the Lagrange multiplier, the solution 2l SOn
j51

H(wj) 2 1DD in D for i 5 1, 2 ..., n,
minimizes the functional

with the boundary conditions

f (w1 , ..., wn) 5 E E
D
FOn

i51
cid(wi(x, y, t))u=wi(x, y, t)u wi

n
5 0 on D. (2.12b)

1 On
i51

eiH(wi(x, y, t)) (2.10) The Lagrange multiplier l is updated using Rosen’s idea,
which essentially requires that the wi’s, determined by
(2.12), satisfy the constaint (2.5):

1
l

2 SOni51
H(wi(x, y, t)) 2 1D2G dx dy.

1
2

d
dt

E E
D
SOn

i51
H(fi(x, y, t)) 2 1 D2

dx dy 5 0
The Frechet derivative of f with respect to fi in the c(x,
y) direction is (2.11)

5 On
i51

E E
D
SOn

j51
H(fj) 2 1D d(fi)

fi

t
dx dy

(2.13)S f
fi

, cD5 E E
D

ci Sd9(fi)u=fiuc 1 d(fi)
=fi ? =c

u=fiu 5 On
i51

E E
D
SOn

j51
H(fj) 2 1D d(fi)u=fiu

1 eid(fi)c 1 l SOn
j51

H(fj) 2 1D d(fi)c dx dy Sci= ?S =fi

u=fiu
D2 ei 2 l SOn

j51
H(fj) 2 1DD dx dy.

5 E E
D
Fci Sd9(fi)u=fiu 2 = ?Sd(fi)

=fi

u=fiu
DD

So we get
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this acts like surface tension or tangential diffusion—while
the constant terms try to move the curve normal to itself
uniformly. The multiple junction interaction comes from
the terms which include the Lagrange multiplier.

Remark 2.3. This motion was analyzed (using an ab-l 5

On
i51

E E
D

d(fi)u=fiu Sci= ?S =fi

u=fiu
D2 eiD

SOn
j51

H(fj) 2 1D dx dy

On
i51

E E
D

d(fi)u=fiu SOn
j51

H(fj) 2 1D2

dx dy

.

(2.14)

stract variational different formulation in terms of curves
and areas, not level sets, and only for the n 5 3 case) by
Reitich and Soner [12]. If each of the ci . 0, there is a
unique viscosity solution. Obviously, negative ci will giveWe need to show that the rescaling works in the follow-
disastrous instabilities. If ci ; 0 they demonstrate non-ing sense.
uniqueness of this problem, very much in the spirit of
nonuniqueness of solutions to scalar Hamilton–JacobiLEMMA 2.1. E/t # 0, given (2.12) and (2.14).
equations without the viscosity solution regularization.

Proof. We use the identity Also in that spirit, they prove uniqueness of the inviscid
(ci ; 0) case by letting «ci be the coefficients with « Q 0.
We shall demonstrate numerically that our method alsoE

t
5 E E

D
FOn

i51
ci S(wi)td9(wi)u=wiu 1 d(wi) picks out this unique limit solution, unlike what was pro-

posed in [17]. Again this is in the spirit of Sethian’s entropy
condition [14] as formulated in [9] for the motion of a=wi

u=wiu
(=wi)tD1 ei(wi)td(wi)G single front. However, the numerical implementation is

different from the single front case. Reitich and Soner’s
analysis does not easily lend itself to a numerical implemen-

5 E E FOn
i51

(wi)t Fd(wi) Fei 2 ci= ?
=wi

u=wiu
GG (2.15) tation. See the Appendix for a further discussion of the

ci ; 0 case.

Remark 2.4. Note that, as expected, the equations of5 2 Õ E EOn
i51

d(wi)u=wiu FFci S= ?S =wi

u=wiu
DD2 eiG2

motion are independent of the choice of level set function
w. In particular, if h(w) is an increasing function, with
h(0) 5 0, then the system (2.12), (2.14) is invariant for2 l SOn

j51
H(wj) 2 1D Fci= ?S =wi

u=wiu
D2 eiGG .

c 5 h(w). This reflects the fact that only level sets
matter, not the point values of the representing function.

We recognize that every integral above is merely a line
Remark 2.5. If we can set wi 5 di at t 5 0, where di isintegral, along the zero level set of the corresponding wi , the signed distance to the boundary (i.e., to the closestof the quantity following u=wiu above. The result follows

point on the boundary) then, at least initially, we havefrom (2.14) and Schwarz’ inequality—see Remark 2.6 be-
low for a related, more general argument.

Remark 2.2. The geometric interpretation of the in-
fi

t
5 ci Dfi 2 ei 2 l SOn

i51
H(fi) 2 1D (2.17a)

duced motion is as follows:
Each level set of each function wi moves normal to itself

with normal velocity: l 5
on

i51 e eD d(fi)(ci Dfi 2 ei)(on
j51 H(fj) 2 1) dx dy

on
i51 e eD d(fi)(on

j51 H(fj) 2 1)2 dx dy
.

(2.17b)(vi)n 5 ci (total curvature of level set) 2 ei 2 l

(total amount of overlap among all regions (2.16)
In [16] a simple reinitialization procedure was given to

2 amount of vacuum between all regions). replace each wi by di at the beginning of each discretization.
We shall use that reinitialization here, describe it in the
next section, and discuss related matters in the Appendix.Of course, we are only interested in the zero level set,
This reinitialization corresponds to adding a set of con-which must coincide with all interfaces Gij , j ? i, if the
straints to the constrained minimization problem in Theo-method is to work. The only coupling of this curvature
rem 2.1 of the form:regularized system of Hamilton–Jacobi equations comes

through the single constraint.
The curvature terms tend to straighten out the curves— u=wiu ; 1, i 5 1, ..., n (2.18)
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which is an alternative way of specifying wi 5 di . This Minimize
removes the nonuniqueness of w in Remark 2.4 and does
not change the interface motion.

E 5 On
i51

E E d(fi(x, y))u=fi(x, y)uc(x, y) dx dy, (2.20a)

Remark 2.6. The gradient-projection method minimiz-
ing e f (w(x)) dx, such that e g(w(x)) dx 5 0, using t 5 Subject to
time as the descent variable, leads to

1
2
E E SOn

i51
H(fi(x, y)) 2 1)2 dx dy 5 « (2.20b)

wt 5 2fw 2 lgw , (2.19a)

E E H (fi(x, y))r(x, y) dx dy 5 Ai (i 5 1, ..., n 2 1).

where (2.20c)

Using the gradient projection method (after rescaling)
leads us to

l 5 2
e gw fw

e g2
w

(2.19b)

fi

t
5 u=fiu Scki 1

=c ? =fi

u=fiu
2 eir 2 l SOn

j51
H(fj) 2 1DD ,

with e g(w) 5 0 at t 5 0. Thus, Schwarz’ inequality implies (2.21a)
that e f (w(x, t)) dx is decreasing as long as gw ? 0, since

with en 5 0, where the Lagrange multipliers l, ei satisfy
a linear system,

d
dt

E f (w) 5 2E f 2
w 1

(e fwgw)2

e g2
w

.

(mij)(n)3(n) 1
l

.

..

en21
25 1

b1

.

..

bn
2 , (2.21b)

Thus, the constraint term must not be degenerate, i.e.,
gw ò 0 if e g(w) 5 0. This is one of the many equivalent
reasons why satisfying the constraint (2.5) is too much to where
hope for; yet (2.6) can be obtained.

m11 5 on
i51 e e d(fi)u=fiu(o

n
j51 H(fj) 2 1)2 dx dy

Remark 2.7. In our calculations we have replaced the
boundary condition (2.17b) by nonreflecting boundary mii 5 e e d(fi)u=fi21ur2 dx dy, i 5 2, ..., n
conditions approximating (Dx)2(2w/n2) 5 0 at the bound-

mi1 5 m1i 5 e e d(fi21)u=fi21uary. This minimizes the effects of the boundary.

r(on
j51 H(fj) 2 1) dx dy, i5 2, ..., n

Remark 2.8. We have begun experimenting with the
original descent method, i.e., where d(wi) is used rather mij 5 0, otherwise.
than u=wiu in (2.12a), (2.12b) and in the analogue of (2.14).
Surprisingly, preliminary results are excellent. We shall The matrix (mij) is symmetric positive definite because
discuss this in future work. the constraints are independent (a general consequence of

the gradient-projection method), and
The framework we have set up here is quite general.

We can easily add more constraints and change the energy
b1 5 On

i51
E E d(fi)u=fiufunctional. For example, in a domain decomposition frame-

work, we may be given a density function r(x, y) . 0 for
the density of node points in each subdomain and c(x, Scki 1

=c ? =fi

u=fiu
D SOn

j51
H(fj) 2 1D dx dy

(2.21c)
y) . 0 for the communication cost per unit length of a
decomposition cut. The optimal domain decomposition

bi 5 E E d(fi21)u=fi21urwill have a required number of nodes in each subdomain
and will have the minimum communication cost across
interfaces. In two dimensions the problem can be formu- Scki21 1

=c ? =fi21

u=fi21u D dx dy, i 5 2, ..., n,
lated as (see [18])
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where where Mi ; number of grid points where u(fi)(m)
jk u , B,

B 5 c Dx (we have taken the constant c 5 1 in our experi-
ments). If Q # (Dt)(Dx)2 then it is stationary and we stop,
else we go back to step 1.ki 5 2= ?S =fi

u=fiu
D5 local curvature of the interface.

This procedure involves a highly nonlinear partial differ-(2.21d)
ential equation restricted to a manifold. There are some
nontrivial numerical details which we now address.

3. NUMERICAL IMPLEMENTATION FOR
MULTIPHASE MOTION Step 1. We approximate the Heaviside and delta func-

tions by C 2 (respectively C 1) functions as in [11, 16, 2]:
The numerical implementation of (2.12), (2.13) is simple,

but requires much of the modern level set technology. The
algorithm can be summarized in four steps:

Step 1. Update the Lagrange multiplier l by (2.14) Ha(x) 5 5
1, x . a

0, x , 2a

1
2 F1 1

x
a

1
1
f

sin Sfx
a DG , uxu # a;

(3.4a)

da(x) 5
d

dx
Ha(x) 5 5

0, uxu . a

1
2a F1 1 cos Sfx

a DG , uxu # a.
l(m11) 5

On
i51

E E
D

d(f(m)
i )u=f(m)

i u Sci= ?S =f(m)
i

u=f(m)
i uD2 eiD

SOn
j51

H(f(m)
j ) 2 1D dx dy

On
i51

E E
D

d(f(m)
i )u=f(m)

i u SOn
j51

H(f(m)
j ) 2 1D2

dx dy

.

(3.4b)

(3.1)
In our calculations we took a 5 Dx.
In (3.1), e e d(w)u=wu= ? (=w/u=wu) is the average of mean

Step 2. Advance fi by the evolution PDE (2.12). A curvature at the front. Since the width of the support of
simple time stepping algorithm is our approximate delta function is positive, we would get

some average of curvature of level sets near the front if
we were to literally use this formula. We get better resultsf(m11)

i 2 f(m)
i

Dt
1 u=f(m)

i u Sei 1 l(m11) SOn
j51

H(f(m)
j ) 2 1)DD by using

(3.2)

k 5
Dw

1 2 w Dw
. (3.5)5 ciu=f(m)

i u= ?S =f(m)
i

u=f(m)
i uD .

This appears, e.g., in [4]; we discuss it in the Appendix.
We generally use more accurate and robust Runge–Kutta- This (nonobvious) formula, when w is the distance function,
type time discretizations; see, e.g., (3.9). Also, recall that is constant normal to the front and, of course, gives the
in (3.1) and (3.2), if any ci 5 0 we replace it by ci 5 DxC, correct value at the front.
with C 5 O(1). Standard central difference formulae are used for all of

Step 3. Let d 0
i 5 f(m11)

i ; reinitialize f(m11)
i to be the the remaining terms in (3.1).

signed distance function, using several iterations of the Step 2. We view (3.2) as an approximation to a Hamil-
following discretized PDE (see [16]): ton–Jacobi equation with curvature regularization of the

form
d (m11)

i 2 d (m)
i

Dt
1 sign(d (0)

i )(u=d (m)
i u 2 1) 5 0. (3.3)

wt 1 u=wu(a(x, y, t)) 5 cu=wu= ?S =w

u=wuD (3.6)

Step 4. Check whether the solution is stationary,
for c $ 0. High order ENO (essentially nonoscillatory)
approximations to equations of this type have been ob-
tained in [9, 10] and are needed to avoid oscillations forQ ;

on
i51 ou(fi)

(m)
jk u,B u(fi)(m11)

jk 2 (fi)(m)
jk u

on
i51 Mi

,
c small. We use the following:
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(i) if ei 1 l(on
j51 H(fj) 2 1) $ 0 then

u=fjku 5 Ï((max(Dx
2fjk , 0))2 1 (min(Dx

1fjk , 0))2) 1 (max(Dy
2fjk ,))2 1 (min(Dy

1fjk , 0))2) (3.7)

(ii) if ei 1 l(on
j51 H(fj) 2 1) , 0 then

u=fjku 5 Ï((min(Dx
2fjk , 0))2 1 (max(Dx

1fjk , 0))2) 1 (min(Dy
2fjk , 0))2 1 (max(Dy

1fjk , 0))2),

where j, k are the index for the x and y coordinates and The curvature term is approximated by using

Dx
2fjk 5

fj,k 2 fj21,k

Dx
1

Dx
2

m = ?S =f

u=fuD5 S fx

u=fuDx
1 S fy

u=fuDy
(3.8)

soFfj11,k 2 2fj,k 1 fj21,k

(Dx)2 ,
fj,k 2 2fj21,k 1 fj22,k

(Dx)2 G
= ?S =f

u=fuDjk
5 FS fx

u=fuDj11/2,k
2 S fx

u=fuDj21/2,k
G@Dx

Dx
1fjk 5

fj11,k 2 fj,k

Dx
2

Dx
2

m

1 FS fy

u=fuDj,k11/2
2 S fy

u=fuDj,k21/2
G@Dy,Ffj12,k 2 2fj11,k 1 fj,k

(Dx)2 ,
fj11,k 2 2fj,k 1 fj21,k

(Dx)2 G
where

S fx

u=fuDj11/2,k
5

(fj11,k 2 fj,k)/Dx

Ï[(fj11,k 2 fj,k)/Dx]2 1 hAs[(fj,k11 2 fj,k21)/2 Dy 1 (fj11,k11 2 fj11,k21)/2 Dy]j2

S fx

u=fuDj21/2,k
5

(fj,k 2 fj21,k)/Dx

Ï[(fj,k 2 fj21,k)/Dx]2 1 hAs[(fj21,k11 2 fj21,k21)/2 Dy 1 (fj,k11 2 fj,k21)/2 Dy]j2

S fy

u=fuDj,k11/2
5

(fj,k11 2 fj,k)/Dy

ÏhAs[(fj11,k 2 fj21,k)/2 Dx 1 (fj11,k11 2 fj21,k11)/2 Dx]j2 1 [(fj,k11 2 fj,k)/Dy]2

S fy

u=fuDj,k21/2
5

(fj,k 2 fj,k21)/Dy

ÏhAs[(fj11,k21 2 fj21,k21)/2 Dx 1 (fj11,k 2 fj21,k)/2 Dx]j2 1 [(fj,k 2 fj,k21)/Dy]2
.

To obtain a high order accurate scheme in time, we
Dy

2fjk 5
fj,k 2 fj,k21

Dy
1

Dy
2

m replace the forward Euler-like discretization of (3.2) by
using a semi-discrete approximation

Ffj,k11 2 2fj,k 1 fj,k21

(Dy)2 ,
fj,k 2 2fj,k21 1 f

j,k22

(Dy)2 G


t
fjk 5 2L[f, j, k]

Dy
1fjk 5

fj,k11 2 fj,k

Dy
2

Dy
2

m

and certain Runge–Kutta-type schemes (see Shu and
Osher [15]). For example, a second-order essentially non-Ffj,k12 2 2f

j,k11
1 fj,k

(Dy)2 ,
fj,k11 2 2fj,k 1 fj,k21

(Dy)2 G oscillatory Runge–Kutta algorithm is Heun’s method,

fm11
jk 5 fm

jk 2 DtL[fm, j, k]

(3.9)m[x, y] 5 5
x if uxu # uyu, x ? y . 0

y if uxu . uyu, x ? y . 0.

0 if x ? y # 0. fm11
jk 5

1
2

fm
jk 1

1
2

fm11
jk 2

Dt
2

L[f̃m11
i , j, k]
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which has a slightly reduced CFL (time step) restriction Remark 3.5. A fundamental idea, whose time has come
in problems like ours, is to use the level set formulationfrom the underlying monotone scheme.

At the boundary of our computational domain, we use only near the zero level sets themselves, thus cutting down
the numerical work by an order of magnitude. This wasthe nonreflecting boundary condition 2w/n2 5 0.
discussed by Adalsteinsson and Sethian in [1], and aStep 3. The original level set formulation [9] did not
method was proposed and successfully implented for therequire anything special about the nature of w, other than
single level set case. We have in [18] developed a somewhatthat it be sufficiently smooth. In a number of works [16,
simpler method which was used here in this multiphase2, 6], it was found to be quite desirable that w be constantly
case and which was applied to three-dimensional problemsupdated to be a signed distance, at least near the front. A
in [18]. Typical calculations in the next section involvingfast reinitialization algorithm was given in [16]; we repeat
three phases, 5 3 103 iterations and a 100 3 100 grid tookit here. In our setting, the singular distributions d(w) and
2As h on our SPARC 10 machine. This is a speedup of atH(w) are involved in the motion (as was true in [16, 2])
least a factor of 5 over the straightforward, global method.and this reinitialization step is quite important.
More generally, this results in an O(N) speedup for theIn (3.3) we approximate the sign function by
time of the method applied to an N 3 N grid.

sign(d 0
i ) 5

d (0)
i

Ï(d (0)
i )2 1 (Dx)2

. 4. NUMERICAL RESULTS

In all our numerical experiments we use
This equation is of the type (3.6) with c 5 0 and a(x, y,
t) 5 sign(d 0

i ). Thus the numerical procedure of (3.7), (3.8) D 5 [0, 1] 3 [0, 1], Dx 5 Dy 5 1022, Dt 5 1025.
is used (with the same boundary conditions, using the ap-
propriate a(x, y, t)). In the first experiment, we study the motion of the inter-

The last technical detail involves the constraint near faces under constant velocity caused only by the difference
multiple junctions. Since the numerical Heaviside function of bulk energy (vij 5 ei 2 ej). As is shown by Reitich and
has the property that Ha(0) 5 As, we require that the con- Soner in [12], there is no unique solution in this case and
straint satisfy the VST solution (letting ci R 0) picks up the unique

solution which satisfies their weak angle conditions at the
triple point. We start with a case described in [12]: threeOn

i51
H(wi(x)) 2

n
2

5 0 (3.10)
straight lines meeting at 1208 (see the right side of Figs.
3a,b,c). We set e1 5 e2 5 5, e3 5 1. In our first experiment

for uwi(x)u sufficiently small for each i. This is done only displayed in Fig. 3a we use a 100 3 100 grid and set c1 5
for the first few time iterations. Since a triple point is stable, c2 5 c3 5 0.01. In Fig. 3b we set c1 5 c2 5 c3 5 0.005
we replace n/2 by 3/2 after a few iterations, again, only in and a 150 3 150 grid. Finally, in Fig. 3c we use c1 5 c2 5
regions in which the uwi(x)u are small. This affects only the c3 5 0.0025 and a 200 3 200 grid. In all cases the left sides
values of l(m11). of these figures agree with the VST solution of [12].

In Fig. 3d we set e1 5 2.5, e2 5 1, e3 5 0.5, c1 5 c2 5
Remark 3.1. Using this numerical implementation we

c3 5 0.005 on a 200 3 200 grid. then each interface moves
find a very small vacuum region (and almost no overlap)

with a different velocity. The 1208 relation is maintained
and no growth of vacuum or overlap in time.

at the triple point which means in this case that we have
the VST solution.Remark 3.2. We replaced each ci by «ci , and let « R

In the second numerical experiment, we start with Fig.0 to see if our numerical scheme picks out the unique VST
4a. In Fig. 4b we set(vanishing surface tension; see [12]) solution computed

with all the ci ; 0. It turns out that it does, but we do
need the numerical lower bound ci $ C Dx. c1 5 c2 5 0, c3 5 1, e1 5 e2 5 e3 5 0,

Remark 3.3. An implicit in time scheme would be use-
which makes u3 5 1808 by the angle relation (2.7) at theful to remove the Dt p (max ci)(Dx)2 parabolic stability
triple point. We have zero bulk energy. Thus, we onlyrestriction. However, it should be noted that the nonlinear
minimize the length of the boundary of the third domain.stiff terms involving H(wj) also restrict the time step. Thus
At t 5 0.05, we get Fig. 4(b). Since the starting figurewe have not yet made this method implicit in time.
already has u3 5 1808 (the boundary of the third domain
is a straight line), we would expect no motion at all at theRemark 3.4. The angle condition for a triple point,

(1.2), is obtained instantaneously (as predicted), i.e., after triple point. This agrees with our result. This also shows
that our numerical scheme has little artificial dissipation.a very small number of iterations.
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FIG. 3. (a) c1 5 c2 5 c3 5 0.01; (b) c1 5 c2 5 c3 5 0.005; (c) c1 5 c2 5 c3 5 0.0025; (d) c1 5 c2 5 c3 5 0.005.

In Fig. 4c we set In the most general case, we have both different bulk
energies and also surface tension between each phase. In
Fig. 4d, we usec1 5 (Ï3 2 1)/4, c2 5 (Ï3 1 1)/4, c3 5 (3 2 Ï3)/4,

e1 5 e2 5 e3 5 0.
c1 5 (Ï3 2 1)/4, c2 5 (Ï3 1 1)/4, c3 5 (3 2 Ï3)/4,

e1 5 10, e2 5 5, e3 5 1.We would expect u1 5 f/2, u2 5 5f/6, u3 5 2f/3 at the
triple point and no convection due to the bulk energy. This
is shown in Fig. 4c, at t 5 0.05. So we not only have the same angle condition as in case
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FIG. 4. (a), (b) c1 5 c2 5 0, c3 5 1; (c), (d) c1 5 (Ï3 2 1)/4, c2 5 (Ï3 1 1)/4, c3 5 (3 2 Ï3)/4.

(b), but we also see the convection of the triple point by in this case. Thus, we again recommend using O(Dx) viscos-
ity in these calculations to be safe.the difference in bulk energy (e1 . e2 . e3). The area of

the first domain is shrinking and the area of the second In the next experiment, we see how a multiple junction
evolves into several triple points. We start with Fig. 6a,domain is growing.

In the third experiment, we deal with the case where with all ci 5 1, ei 5 0. As time goes on, we get Fig. 6b and
Fig. 6c and Fig. 6d.two interfaces merge and topological change occurs. We

start with two interfaces with sharp corners, Fig. 5a at Figure 7 shows the effect of the curvature term in the
evolution procedure. We see, for e1 5 3, e2 5 5, and e3 5 1t 5 0. We set e1 5 1, e2 5 10, e3 5 5, and c1 5 c2 5 c3 5

0. At t 5 0.02 we get Fig. 5b and at t 5 0.05 we get Fig. the results with differing c’s, the same c for each interface.
Figure 7a shows the result with c 5 1 for a 100 3 100 grid.5(c). We see that this level set approach treats topological

changes very easily. The curvature straightens out the initial bump in G23 and
yields approximately 1208 angles. Figure 7b shows the re-In Fig. 5d we set c1 5 c2 5 c3 5 0.01. With small viscosity,

we get almost the same result as without viscosity at all, sults for c 5 0.1 on the same grid. The bump is less straight
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FIG. 5. (a)–(c) c1 5 c2 5 c3 5 0; (d) c1 5 c2 5 c3 5 0.01.

and the 1208 angle is valid only in a ‘‘boundary layer’’ near front, i.e., that u=f(x, t)u 5 1. This does not remain true
in general and is very important, especially when v(x, t)the triple point. Figure 7c shows the results for c 5 Dx 5

0.01. The bump is still visible, and this is clearly regularized involves singularities at the front. Here, we shall give some
ideas on how to maintain w as a distance function. (In thismotion by a constant. Finally, Fig. 7d has c 5 Dx/5, with

Dx 5 0.005. We are stretching the limits of our slight section the results apply in an arbitrary number l, of space
dimensions. We simply denote a point in Rl by x).regularization and we see that typical development of a

‘‘kink’’ in the inviscid motion case. LEMMA A1. Let vn 5 v ? =w be the normal velocity of
each level set, and set w(x, 0) to be the signed distance

APPENDIX: SOME NEW LEVEL SET METHODOLOGY function. Then w remains as a signed distance function iff
=vn ? =w ; 0.To make each f(x, t) unique and well behaved numeri-

cally, we require that it be the signed distance from the Proof.
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FIG. 6. ci 5 1; ei 5 0.

(i) Evolve w(x, t), starting from a distance function,

t
u=wu2 5 2 =w ? =wt 5 2 2(=w ? =vn)u=wu

(A.1) wold, via

22vn(=w ? =u=wu).
wt 1 v ? =w 5 0, (A.1a)

i.e.,Thus, u=wu ; 1 for later time iff the ‘‘source term’’ vanishes;
i.e., =w ? =vn ; 0.

wnew 5 wold 2 vn Dt 1 O(Dt)2. (A.1b)
We show that the previous method of reinitialization

(ii) Do the reinitialization on wnew as usual[16], as described in Section 3, is equivalent to modifying
vn(x, t) off the front. The reinitialization procedure
comes from w(m11) 5 w(m) 1 sign(w(0)(1 2 u=w(m)u) Dt 1 O(Dt)2 (A.2a)
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FIG. 7. (a) c1 5 c2 5 c3 5 1; (b) c1 5 c2 5 c3 5 0.1; (c) c1 5 c2 5 c3 5 0.01; (d) c1 5 c2 5 c3 5 0.001.

with on the front.

w(0) 5 wnew. (A.2b) Proof. From (A.2)
We have

LEMMA A2. The reinitialization step (A2) is equivalent =f(0) 5 =fnew 5 =fold 2 =vn Dt 1 o((Dt)2).
to extending vn(x, t) off the front so that

=w ? =vn 5 0 We next use Taylor expansion and the fact that
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u=foldu 5 1 5

f(1) 5 f(0) 1 sign(f(0))(1 2 u=f(0)u) Dt 1 o(Dt2)

5 fold 2 vn Dt 1 sign(f(0))

(1 2 Ï(=fold 2 =vn Dt) ? (=fold 2 =vn Dt)) Dt 1 o(Dt)2

5 fold 2 vn Dt 1 sign(f(0))

F1 2 Su=foldu 2
=fold ? =vn

u=foldu
Dt 1 O(Dt)2)G Dt 1 o(Dt)2

FIG. 8. Corner at the front.
5 fold 2 Fvn 2 sign(wold)

=fold ? =vn

u=foldu
DtG Dt 1 O((Dt)2)

by induction,
Thus, if u=wu ; 1 initially, it remains so for a later time.

f(m) 5 fold 2 v(m)
n Dt 1 o(Dt)2,

The PDE (A.3b) is highly nonlinear and difficult to ana-
where lyze. The numerical implementation is difficult to carry out

in the presence of corners, since the corner can be the
preimage of a whole section of a curve under the mapv(m)

n 5 v(m21)
n 2 sign(fold)

=fold ? =v(m21)
n

u=foldu
Dt

x R x 2 w =w. See Fig. 8.
The formula (A.3a) simplies and becomes useful if vn is

which means, as m R y, v(m)
n (x, t) goes to the steady-state a function of curvature; see e.g., [4].

solution (t independent) of
LEMMA A4. If f(x, t) is a signed distance and

smooth, thenvn(x, t, t)
t

1 sign(f(x, t))
=f(x, t) ? =vn(x, t, t)

u=f(x, t)u
5 0.

k(x 2 f =f) 5
2Df(x)

1 2 f(x) Df(x)
. (A.4)We have not yet tried to implement this procedure.

Another appealing idea involves tracing the velocity
back to the front—see, e.g., [4]. This is the content of Proof. Let x 5 x 2 f(x) =f(x) (see Fig. 9),
the following.

LEMMA A3. If w(x, 0) is the signed distance, then w(x,
k(x) 5

1
r(x) 2 f(x)

5 2= ?S =f(x)
u=f(x)uD5 2=f(x)t) remain a signed distance if we use the following procedure:

Set

r(x) 5 f(x) 2
1

Df(x)
,

vn(x, t) 5 vn(x 2 w =w) 5 (v ? =w)(p(x)) (A.3a)

and solve so

wt 1 vn(x 2 w =w) 5 0, (A.3b)
k(x) 5

1
r(x)

5
2Df(x)

1 2 f(x) Df(x)
.

where the point on the curve closest to x is

p(x) 5 x 2 w =w. (A.3c)

Proof.

d
dt

u=fu2 5 2 =f ? =ft

5 22 =f ? =vn(x 2 f =f, t)

5 22 =f[I 2 =(f =f)] =vn

FIG. 9. Curvature using distance function.
5 2[2(1 2 u=fu2) =f 2 f(=u=fu2)] =vn .
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displayed on the right of that figure. The normal velocity
of the curve G12 is 0 while G23 and G13 have normal velocity
vn , say, equal to one. Thus the Huygen’s principle approach
devised in [17] amounts to moving the boundary of V3

normal to itself with unit normal velocity. This means that
after time t the boundary of V3 consists of all points at a
distance t from the original boundary, while G12 does not
move. The result can be achieved by obtaining the viscosity
solution of a single level set function w3 , solving

w3 1 u=w3u 5 0 (A8)

and the numerical methods of [9, 10] will yield the solution
in [17]—see Fig. (10). Thus even though we compute w3

as the (viscosity) limit as « Q 0 ofFIG. 10. Motion with constant velocity at triple point.

wt 1 u=wu 5 «u=wu= ?S =w

u=wuD ,Remark A.1. The resulting evolution equations of
the type

the limit solution is the one in [17], not the regularized
limit of Reitich and Soner in [12].w

t
5 F S =w

1 2 w =w
D (A5)

If we turn to our formulation (2.12) and let all the ci 5
0, i 5 1, 2, 3, we arrive at the system

for F 9(x) $ 0 are well posed in the sense of viscosity
solutions (see, e.g., [3]) if the right-hand side of (A5) is a
smooth nondecreasing function of Dw. This is true away w1

t
5 u=w1u S2l SO3

j51
H(wj) 2 1DD (A.10a)

from w Dw 5 1.

In the special case when F is linear and increasing we w2

t
5 u=w2u S2l SO3

j51
H(wj) 2 1DD (A.10b)have used the following implicit method to integrate (A5)

(with Dw approximated by standard central differencing)
w3

t
5 u=w3u S21 2 l SO3

j51
H(wj) 2 1DD (A.10c)

w(m11) 2 w(m)

Dt
5 F S Dw(m11)

1 2 w(m) Dw(m)D . (A6)

and in the no overlap, no vacuum case, the system is equiva-
When we approach the zeros of the denominator (away lent to (A.8) which again gives the result in [17], not [12].
from the front) the scheme breaks down. Thus we replace The addition of a Dx penalty for length reverses this.
the denominator by
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